If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-14y=40
We move all terms to the left:
y^2-14y-(40)=0
a = 1; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·1·(-40)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{89}}{2*1}=\frac{14-2\sqrt{89}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{89}}{2*1}=\frac{14+2\sqrt{89}}{2} $
| 5x-11+3x-3+3x+18=180 | | 6y+2=4y+14 | | (5x-11+3x-3+3x+18=180 | | -0.5+x=-6.75 | | 5x+30+2x=180-5x+30 | | (1/3)x-8=9 | | 7c=42= | | 10x+4+28=15x+2 | | 4x-4/5=11/6 | | d=4.9(4)^2 | | a/5.9=-17.2 | | 3(x+13)=42 | | a+1=–11 | | 211=x-(-7) | | 4c-4/5=22/5 | | 2.x+15=40 | | 2=4y=-26 | | -5-u=7 | | -2.3=-20+n | | 4.3x-2.1=6.3 | | 3x-8+9x-4=72 | | 3b^2-b-8=0 | | 8+4(n-1)=-17+n | | /6-2g=12 | | (5x-11)(3x-3)(3x+18)=180 | | 7^5*7^m=7^15 | | 2x-26+40+4x-2=180 | | m/3-10=12 | | –2(s+8)+–6=–4 | | (3(6)2)v+10=33v+10 | | 13=n/4 | | 7p=5p-24 |